Bose-Einstein Condensation of Very Cold Atoms

Randall G. Hulet

What is Temperature?

 $T \propto v^2$ so slower \Leftrightarrow colder

Kelvin (absolute) temperature scale: T(Kelvin) = T(Celsius) + 273°

Boomerang Nebula The (Naturally) Coldest Region of the Universe

Adiabatically cooled to ~1 K by 1500 years of expansion

R. Sahai and L.-A. Nyman, Astro. J. **487**, L155 (1997)

The Quantum Mechanics of Cold

- Wave/particle duality
 - wavelength ∞ 1/(mass × velocity)

High temperatures – particle-like

Low temperature – wave-like

The "Quantum Regime"

Quantum regime:

Wavelength $\propto 1/(\text{mass} \times \text{velocity})$

- Easy for small mass, i.e. electrons (e diffraction, etc.)
- Not so easy for atoms: T ≈ 100 nano-Kelvin
- Amazing new phenomena appear in the quantum regime

What Happens in the Quantum Regime?

Depends! There are two kinds of particles:

Fermi-Dirac or "fermions"

Electrons, protons, neutrons

composites with *odd* number of e, p, and n:

Lithium (⁶Li)

Bose-Einstein or "bosons"

composites with even number of e, p, and n:

Hydrogen (H) Helium (⁴He)

Lithium (⁷Li)

E. Fermi

1924-26

S.N. Bose

A. Einstein

Bosons vs. Fermions

Fermions cannot occupy same space:

Bosons can!

- Periodic table of the elements
- Stabilizing cold stars

Bose-Einstein condensation (BEC)

A BEC is a phase transition to a collective quantum state

Examples of Phase Transitions Involving Bosons and Fermions

Superconductor

Superfluid

A primary motivation is to understand high-T superconductors

Decade Thermometer

30 K

3 K

300 mK

30 mK

3 mK

300 μΚ

30 μΚ

3 μΚ

300 nK

30 nK

Room temperature
Air liquifies

Cosmic background / helium liquifies – discovery of superconductivity (1911)

"Standard" cryogenic limit

Dilution refrigerator limit – discovery of superfluid liquid ³He (1972)

Laser cooling limit

Quantum regime for atomic gases – discovery of Bose-Einstein condensation (1995)

?

Methods

 Laser cooling micro-Kelvin

Atom trapping

Evaporative cooling
 micro-Kelvin → nano-Kelvin

Evaporative Cooling

Bose-Einstein Condensation (BEC)

High temperatures – particle-like

Low temperature – wave-like

Very low temperature - waves overlap and bosons undergo a phase transition to a BEC

BEC of a Trapped Gas

U Colorado, 1995

So What Is It?

Pure musical tone ↔ noise

Laser light ↔ flashlight

Texas A&M Aggie Band ↔ Rice Marching Owl Band

SCIENCE

22 DECEMBER 1995 VOL. 270 • PAGES 1893-2064

Molecule of the Year

> the Bose-Einstein Condensate

BEC's Interfere Like Waves!

Vortices in the Superfluid

Atomic Solitons

Atom Lasers

Fermi Pressure

Fermion Pairing

- Fermions cannot directly form a BEC
- However, pairs of fermions are bosons!

- Condensation of fermion pairs gives
 - Superconductivity
 - Superfluidity ³He
 - Dilute gas: Interactions variable

Applications and Motivation I

Basic Physics:

- Experimental realizations of the paradigms of condensed matter physics:
 - Models of high-T_c superconductivity
 - Pseudo-gap
 - Luttinger liquid, spin-charge separation, quantum Hall effect ...

Quantum gases are pure, defect-free, experimentally well-controlled systems, in which many of the parameters (density, number, temperature, interaction strength, lattice periodicity and strength, ...) are readily varied.

Applications and Motivation II

- No direct applications yet
- Promising directions:
 - atom laser
 - direct-write atom lithography
 - atom interferometry (inertial sensors)
 - gravity gradiometers
 - rotation sensors (ring gyro)
 - atomic clocks

